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ABSTRACT

Generative artificial intelligence (GenAI) is driving a major transformation in ophthalmology by employing models such as generative 
adversarial networks, diffusion models and large language models (LLMs) to create novel yet realistic synthetic data. These systems, 
including emerging architectures capable of modality conversion (such as text-to-image generation), provide a foundation for diverse 
applications. Applications based on images encompass generation of synthetic ophthalmic images to augment data sets for rare conditions, 
enhancement of image quality to improve clinical assessment, conversion between imaging modalities to reduce equipment costs, and 
simulation of disease progression or prediction of post-treatment appearance to support surgical planning and patient counselling. 
Concurrently, LLMs significantly influence clinical practice by supporting diagnostic workflows and differential diagnoses within 
clinical decision support systems, assisting with patient triage, automating clinical documentation and reporting, and enhancing patient 
communication and education through personalized, multilingual content. GenAI also shows promise in medical education and research 
by facilitating the creation of diverse teaching materials and streamlining literature review, data analysis, and manuscript preparation. 
However, successful deployment of GenAI requires careful attention to ethical, safety, and regulatory challenges, including model 
reliability, data bias, patient privacy, and establishing clear legal frameworks and human oversight. Future developments are likely to 
include truly multimodal systems that integrate the use of synthetic data sources, personlized medicine approaches, and expanded use 
in tele-ophthalmology, together with the widespread adoption of purpose-specific custom-GPT models and exploration of agentic AI’s 
potential in ophthalmic practice, underscoring the crucial role of AI literate ophthalmologists in these emerging fields.
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instead of classifying or detecting. This capability enables 
GenAI to support various ophthalmic applications, from 
disease diagnosis and clinical decision-making to patient 
information and medical education.1-4

Although numerous GenAI architectures have been 
introduced, ophthalmology most commonly employs 
three groups of generative models: Generative adversarial 
networks (GANs), diffusion models, and large language 
models (LLMs).4 GANs and diffusion models are typically 

1- INTRODUCTION

Recent advances in artificial intelligence (AI) have 
triggered revolutionary changes in ophthalmology, as in 
many other medical fields. Central to these developments 
are generative AI (GenAI) models that learn from existing 
data to produce realistic content such as images, text, 
and video.1, 2 We believe that GenAI should be treated 
as a distinct category from other AI paradigms because 
it can generate entirely new, synthetic, and realistic data 
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maps a random noise vector into a small stack of feature 
maps with fully connected layers and then progressively 
up-samples them through transposed-convolution blocks, 
each followed by normalization and activation, to refine 
detail, whereas the discriminator network attempts to 
distinguish real data from the synthetic data produced by 
the generator. Throughout training, the generator learns 
to produce images that mirror the true data distribution, 
and the discriminator becomes skilled at distinguishing 
real from fake images (Figure 1). This adversarial training 
process eventually allows the generator to create synthetic 
examples that closely resemble real images, enabling 
the production of data that faithfully approximates the 
underlying distribution of genuine samples.

Until recently, GANs had been the most widely used 
GenAI approach for generating synthetic medical 
images.5, 9, 10 Their main technical strengths are rapid data 
synthesis and broad adaptability. Architectural variants 
such as StyleGAN, CycleGAN, and Conditional GAN 
make it possible to tailor outputs for diverse problems.4, 

9, 11 Nevertheless, GANs also present important technical 
limitations.4, 12, 13 Training is often delicate and unstable. If 
the competitive balance between the two networks breaks 
down, a situation known as mode collapse can occur, and 
the generator begins producing limited and monotonous 
data. When the balance of power between the discriminator 
and the generator is not adjusted correctly, the training can 
suffer from vanishing gradient or oscillation problems. 
Furthermore, because GANs rely on unsupervised 
training, they sometimes generate images that contain 
anatomic or structural inconsistencies. Indeed, studies have 
documented ocular images produced by GANs that appear 
realistic at first glance yet reveal anatomical impossibilities 
upon close inspection.14, 15

2b- Diffusion Models

Diffusion models are probabilistic generative models that 
have emerged as an alternative to GANs and have recently 
achieved notable success in data synthesis. In a diffusion 
technique, noise is added to the original data in a stepwise 
manner, creating a corruption process, the model then 
learns to reverse that process and reconstruct the original 
data distribution. During training, the model learns to 
denoise corrupted inputs, whereas during generation, it 
starts from pure random noise, progressively structures 

chosen for image-based applications, whereas LLMs 
are used effectively in text-based tasks such as clinical 
documentation, development of educational materials, 
and patient communication.4 We also expect that new 
generative models capable of changing data modality, for 
example, text-to-image or image-to-video, will soon attract 
attention in ophthalmology through many innovative 
applications.1, 2, 5, 6

Ophthalmology provides an exceptionally suitable setting 
for deploying generative models, as it contains large 
amounts of digital images and clinical data. The potential 
uses of these technologies are wide-ranging, and current 
research is shaped by the needs of both ophthalmologists 
and patients. However, despite this exciting potential, the 
clinical use of GenAI models is still in its early stages 
and faces several fundamental limitations. In particular, 
the clinical accuracy of data produced by AI, ethical and 
legal regulations, patient privacy, and safety are viewed as 
issues that must be resolved before these technologies can 
be adopted on a wide scale.7

In this review, we aim to provide a perspective on the 
integration of GenAI into ophthalmology practice by 
examining its current applications, basic principles, 
potential opportunities, and the ethical and legal debates 
it raises.

2- FUNDAMENTALS OF GENERATIVE AI 
MODELS

GenAI models are algorithms that learn patterns from 
existing datasets and generate entirely new, original, but 
synthetic content. This content can either maintain the 
same modality as the input (for example, text-to-text, 
image-to-image) or transition across different modalities 
(such as text-to-image or text-to-video), producing outputs 
that align with the structure or semantics of the input.1, 2, 

6 Currently, the most common generative model types in 
ophthalmology are GANs, diffusion-based models, and 
LLMs.

2a- Generative Adversarial Networks

GANs are a deep learning architecture proposed by 
Goodfellow et al. in 2014 that operates through a 
competitive interaction between two neural networks, a 
generator and a discriminator.8 The generator network first 
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the data, and produces realistic synthetic outputs. In 
short, diffusion-based generators operate on a theoretical 
framework grounded in denoising score matching and 
probabilistic modelling. Their stepwise strategy enables 
them to capture fine details of high-dimensional and 
complex data distributions incrementally.16-18 

Diffusion models have a more stable training process than 
GANs and largely eliminate the mode collapse problem that 
is often observed with GANs. Because of their architecture, 
these models are inherently stable and can generate high-
resolution and much more diverse synthetic images.2, 4, 16 
A study by Dhariwal and Nichol showed that diffusion 
models outperform GANs in both image synthesis quality 
and diversity.16 Diffusion models are also particularly 
strong at text-to-image conversion. Systems such as Stable 
Diffusion (Runway, Stability AI, and LMU Munich) 
and DALL-E (OpenAI) apply the diffusion principle to 
transform a written description (text) into a matching 
synthetic image. For instance, given the prompt “an optical 
coherence tomography scan demonstrating dry age-related 
macular degeneration,” the model can produce an artificial 
optical coherence tomography (OCT) image that fits the 
description. These vision language models are trained on 
very large visual and textual datasets and can support many 
creative uses in ophthalmology.19-21 Another advantage of 
the diffusion approach is its controllability and capacity for 

incremental refinement. Because an intermediate output is 
produced at each generation step, the user can intervene 
when needed, giving diffusion models flexibility in creative 
applications and scenarios requiring progressive editing.22

Alongside these innovative strengths, diffusion models also 
present several technical limitations. They are generally 
more computationally expensive, and their generation 
process takes longer than that of GANs, because the image 
is built in gradual steps. Achieving high-resolution outputs, 
therefore, demands powerful hardware and large datasets. 
Another limitation is the greater mathematical complexity 
of diffusion models. To understand and, when necessary, 
adapt the training procedure, one must be comfortable with 
sequential probabilistic processes and continuous random 
variables. This suggests that developing applications may 
require more theoretical expertise and experience than 
working with GANs. Moreover, although diffusion models 
operate more stably and produce more consistent outputs 
than GANs, their multi-step reconstruction can permit the 
accumulation of errors, and these accumulated errors may 
degrade the final results.23-25

2c- Large Language Models

LLMs are deep-learning systems that have achieved 
a breakthrough in processing and producing human-
like language in recent years. Built on the transformer 

Figure 1: A schematic 
representation of the overall 
architecture of generative 
adversarial network models. 
This image was created entirely 
using the ChatGPT image 
generation model (gpt-image-1).
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architecture, LLMs are trained on massive text corpora 
containing trillions of words and learn the statistical 
patterns of language, enabling them to generate fluent 
and coherent text in response to a given prompt, their 
most striking feature is the ability to produce human-like 
language output. Through exposure to vast data, they 
acquire a distributed representation that encodes grammar, 
semantic consistency, and knowledge.3, 19, 26, 27 The technical 
strength of LLMs rests on extensive pre-training with large 
datasets followed by task-specific fine-tuning. In the first 
stage, the model internalizes broad linguistic patterns 
from very large text collections, and in the second stage, 
it is retrained and customized on small datasets tailored to 
particular tasks. This two-phase training strategy allows 
the models to achieve successful results across various 
applications.28 When you examine the technical definition 
above, you can see how the abbreviation GPT, which we 
often use, originated: Generative Pre-trained Transformer.

Well-known applications in this category include ChatGPT 
(OpenAI), Llama (Meta), Gemini (Google DeepMind), 
DeepSeek (Hangzhou DeepSeek Artificial Intelligence 
Basic Technology Research Co., Ltd.), and similar systems. 
Unlike earlier rule-based or single-task-focused health-
care AI solutions, LLM-based chatbots offer an interactive 
and versatile experience for users. Containing billions of 
parameters, these models attract attention for their ability 
to extend a given prompt with sentences and paragraphs 
that approach human writing quality.28 Thanks to this 
scale and capability, LLMs are considered foundation 
models that address many language processing problems 
under a single umbrella model.1, 29 Because their pre-
training is general enough to underpin many downstream 
tasks, they are considered the generative subset within 
the broader family of foundation models. However, not 
every foundation model is generative. A foundation model 
refers to a versatile deep learning core that is trained in 
a self-supervised manner on large and diverse data and 
can later be adapted to numerous tasks with only minimal 
fine-tuning.29 By learning general representations from 
text, images, audio, or multimodal inputs, these models 
can create synthetic outputs and transfer readily to new 
applications. In clinical settings, for example, an LLM 
that can understand free-text questions from a clinician 
or patient and deliver logical, detailed answers can serve 
as a general-purpose assistant for information access and 

communication. This capability has brought the potential 
uses of LLMs to the forefront across every branch of 
medicine, including ophthalmology.3,19,26

The first major issue with LLMs is their dependence 
on the data used for training. These models can absorb 
and reproduce the biases present in those datasets, so 
the accuracy and impartiality of their outputs must be 
monitored continuously. In fact, an LLM is considered only 
as reliable as the data on which it is trained.19 Achieving the 
desired result also hinges on writing effective text prompts, 
and the growing use of LLMs has even given rise to a new 
profession called prompt engineering.30 A second main 
concern is the tendency of LLMs to produce erroneous 
outputs, a phenomenon often referred to as hallucination.7 
When a model lacks sufficient correct information or cannot 
locate a direct answer, it may confidently fabricate content 
that does not exist. LLMs further suffer from interpretability 
challenges because their enormous parameter counts 
make it difficult to understand why a particular output 
was generated.27 Finally, training a multibillion-parameter 
LLM demands vast amounts of data and extended access 
to powerful compute infrastructure such as GPU or TPU 
farms, resulting in high costs for researchers.19 Although 
the recent DeepSeek-R1 model is said to offer a more cost-
effective approach, there is still speculation about how the 
model was developed.31, 32

2d- Other Generative AI Models

In GAN and diffusion frameworks, the input is an image, 
and the output is again an image, whereas in LLMs, the 
input is text, and the output is likewise text. Over the 
last few years, GenAI systems have become available to 
handle text-to-video, text-to-image, and image-to-video 
tasks. As their names imply, these models accept one data 
modality and return a different one. Beyond ChatGPT-4o 
(OpenAI), DALL-E 3 (OpenAI), gpt-image-1 (OpenAI) 
and Midjourney (Midjourney, Inc.), companies such as 
Adobe (https://helpx.adobe.com/acrobat/using/generate-
image-from-text.html) and Google-DeepMind offer 
comparable text-to-image or text-to-video tools. After 
receiving a natural-language prompt, the model returns 
an image, for instance, if asked to create a depiction of 
diabetic retinopathy, the system can produce a synthetic 
fundus photograph that shows this disease (Figure 2). 
Conversely, specific image-to-text models (traditional 
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optical character recognition [OCR] systems are omitted 
here) also belong to the GenAI family. One can envision, 
for example, a LLM system built to interpret an OCT 
scan. Because such architectures process both visual and 
linguistic representations and ultimately provide synthetic 
outputs, they are often grouped under the term vision 
language models.1, 21

Among the best-known text-to-video models are Sora 
(OpenAI), Kling AI, and Veo 2 (Google DeepMind).33 In 
these systems, the input is a written prompt, and the model 
generates a video that matches the description. Image-to-
video models operate similarly: a single still image serves 
as input, and the output is a video. Most such systems need 
an additional prompt that explains the target clip, although a 
few, such as Ray2 (Luma AI), can create video without any 
text input. Modern diffusion-based architectures used for 
text-to-image, image-to-video, and text-to-video generation 
share a common backbone composed of a variational auto-
encoder, a diffusion transformer, and a cascade up-sampler. 

Depending on the input modality, they integrate extra 
conditioning layers, such as text embeddings or motion 
adapters. These layers allow the system to produce high-
resolution training videos, patient education animations, 
synthetic OCT or fundus images, and even generate a 
textual interpretation of an OCT scan.1,33

3- IMAGE-BASED GENERATIVE AI 
APPLICATIONS IN OPHTHALMOLOGY

As previously mentioned, it is essential to distinguish 
Generative AI (GenAI) models from machine learning and 
deep learning models used for image classification and 
segmentation. In our previous studies, we demonstrated 
that various machine learning models can be utilized for 
the detection and classification of vitreomacular interface 
disorders, diabetic macular edema, and strabismus.34-36 
On the other hand, Generative AI (GenAI) models 
generate entirely new synthetic images or perform data 
transformations across different modalities as their output. 
GenAI algorithms used for synthetic image generation, 
such as GANs and diffusion models, can be grouped into 
four main ophthalmic application categories:

a. Disease-specific synthetic image generation

b. Image enhancement

c. Prediction of post-treatment appearance

d. Modality conversion in ocular imaging

3a. Synthetic Image Generation and Data Augmentation

GenAI models, especially GANs, are widely used in 
ophthalmology to generate synthetic images and augment 
datasets. Their most significant clinical potential emerges 
in rare diseases and in situations where training data are 
limited.1, 9 When a sufficiently large training set is available 
(the exact number is never straightforward to specify 
because it depends on the characteristic imaging features of 
the disease and on the technical architecture of the model), 
disease-specific images can be synthesized to expand 
the dataset. For example, rare retinal pathologies such as 
North Carolina macular dystrophy or Doyne honeycomb 
retinal dystrophy are represented by only a few cases in 
real-world datasets. Starting from the existing limited 
images, GANs and diffusion models can generate realistic 
and clinically meaningful synthetic images. Diffusion 
models can likewise create high-resolution OCT or fundus 

Figure 2: A synthetic color fundus photograph of diabetic 
retinopathy was generated using the gpt-image-1 vision-
language model with text-prompt–supported image-to-
image generation. This image was created entirely using the 
ChatGPT image generation model (gpt-image-1).
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photographs synthetically, helping clinicians and trainees 
learn the imaging features of rare diseases.37

The same synthetic data can also facilitate the training of 
diagnosis algorithms that rely on machine learning. For 
instance, deep learning systems designed to detect diabetic 
retinopathy can improve generalization and real-world 
performance when supplemented with additional synthetic 
fundus images produced by GAN or diffusion models.4, 38

3b. Image Enhancement 

GANs and diffusion models are not limited to producing 
synthetic images in ophthalmology; they can also be used 
to enhance existing images. Reducing speckle noise in 
OCT scans, for example, can markedly improve clinical 
assessment, and algorithms that transform low-quality 
OCT images into high-resolution versions allow more 
precise automatic segmentation of retinal layers and make 
disease monitoring easier (Figure 3).1, 4, 9 Consider a model 
designed to quantify intra-subretinal fluid volume. Because 
the fluid appears as dark pixels, a cleaner high-resolution 
image free of noise artefacts (white pixels within the fluid 
space caused by speckle noise) should allow the model to 
measure the volume more accurately. Additionally, various 
GAN algorithms can be used for ocular image upscaling (to 
obtain a high-resolution image from a low-resolution image) 

(Figure 4). In one of our previous studies, we demonstrated 
that a GAN-based approach, the Noise2Noise algorithm, 
can effectively diminish noise in OCT images (Figure 5).39

3c. Modality conversion

Modality conversion is another important innovation 
that generative AI models introduce to ophthalmology. 
These algorithms transform images acquired with one 
technique (for example, structural OCT scans) into images 
corresponding to a different modality (for example, OCT-
angiography).4 A wide spectrum of ocular imaging methods 
is used for diagnosis, and the importance of multimodal 
imaging is increasing. Because each modality generally 
requires its own hardware, GAN-based converters can 
generate the needed images with only one or a few 
existing devices, eliminating the expense of additional 
equipment. This capability reduces costs and offers patients 
alternatives to costly or invasive procedures. For instance, 
synthesizing OCT-angiography views from structural OCT 
data may lessen the need for new device purchases.4 Many 
cross-modality converters will likely be tailored to specific 
clinical requirements, so diverse examples are expected 
to emerge. Nevertheless, these models remain less mature 
than other GenAI tools intended for clinical deployment 
and are still under development (Figure 6).

Figure 3: The Noise2Noise GAN model was used to reduce speckle-noise in cross-sectional spectral-domain optical coherence 
tomography (SD-OCT) images with diabetic macular edema, enabling clearer visualization of retinal structures and cystic 
spaces. A) Original SD-OCT image. B) Synthetic image with noise reduction with Noise2Noise algorithm.
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Figure 4: The low-resolution cranial magnetic resonance image (A) of a case of idiopathic intracranial hypertension was 
upscaled by 600% using the ESRGAN model, resulting in a high-resolution image (B).

Figure 5: This figure shows a representative example demonstrating the reduction of speckle noise in enhanced depth imaging–
optical coherence tomography (EDI-OCT) images using the Noise2Noise algorithm. In the synthetic image, the speckle noise 
observed in the vascular structures of the subfoveal choroidal region in the original scan is markedly reduced (blue-framed 
area). A. Original EDI-OCT image, B. Speckle-noise-reduced synthetic image, C. Binarized original EDI-OCT image with 
Niblack auto-local thresholding, D. Binarized synthetic EDI-OCT image with Niblack auto-local thresholding.
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3d. Disease Prognosis and Post-treatment Simulations

One of the most promising ophthalmic applications of 
GenAI is its capacity to forecast disease progression and 
to simulate ocular or facial appearance after surgical 
or medical intervention. For example, using GANs, it is 
possible to generate optical coherence tomography scans 
that depict the macula of patients with age-related macular 
degeneration or diabetic retinopathy after anti-VEGF 
injections. Such simulations allow clinicians to visualize 
probable therapeutic outcomes in advance and to share 
them with the patient, fostering realistic expectations and 
improving adherence.4 GAN-based systems can predict the 
cosmetic results that may follow surgery for upper eyelid 
ptosis, providing both surgeons and patients with valuable 
preoperative insight.40 This capability can be crucial in 
surgical planning and counselling the patient. 

4. CLINICAL APPLICATIONS OF LARGE 
LANGUAGE MODELS IN OPHTHALMOLOGY

The general-purpose capabilities of LLMs are being adapted 
to various domain-specific tasks in ophthalmology. Current 
uses can be grouped into six broad areas: (1) diagnostic 
support and generation of differential diagnoses within 
clinical decision support systems, (2) triage of incoming 
cases, (3) clinical documentation and reporting, (4) patient 
education and communication, (5) medical and specialist 
training, and (6) academic writing and research assistance. 
In this section, the clinical applications of LLMs will be 
discussed, and their roles in academic and medical or 
ophthalmology education will be addressed in the next 
section. These categories are not exhaustive, additional use 
cases will emerge as new clinical needs arise.

Figure 6: Representative spectral-
domain optical coherence tomography 
(SD-OCT) images of circumpapillary 
retinal nerve fiber layer (RNFL) 
in a case of optic disc edema. A. 
Original SD-OCT image in which 
increased RNFL thickness obscures the 
underlying choroidal structures. B. This 
image was processed with the BREAD 
model, a modular deep convolutional 
neural network (CNN)–based low-light 
enhancement algorithm, enabling clear 
visualization of choroidal structures. 
Thus, it permits assessment of the 
choroidal region without enhanced-
depth imaging–OCT or swept-source 
OCT.
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Whatever the purpose, the structure and content of the 
prompt decisively influence the quality of the output.1, 3, 19 
A vague query such as “My right eye does not see well. 
What could be the cause?” will elicit a markedly different 
reply from a detailed prompt such as: “My right eye 
developed sudden painful vision loss one hour ago, the 
eye is red, I can see partially but the image is blurred, the 
ocular pain has triggered a headache and vomiting. What 
are the most likely causes, and should I urgently consult an 
ophthalmologist?”. Well-constructed, informative prompts 
are therefore essential for obtaining optimal results. The 
applications discussed below should be evaluated with this 
principle in mind.

LLM-based clinical decision support systems (CDSS) can 
analyze patient findings, prior clinical data, and current 
literature to offer differential-diagnosis suggestions and 
other forms of diagnostic assistance. When a patient 
reports symptoms such as blurred central vision and 
metamorphopsia, the model can propose age-related 
macular degeneration, diabetic macular oedema, or an 
epiretinal membrane as possible diagnoses. Acting as a 
virtual assistant for clinicians, the model can also interpret 
ocular complaints and return relevant diagnoses and 
treatment options grounded in up-to-date guidelines. In 
this way, it supports the differential-diagnosis process and 
helps ensure that rare eye diseases are not overlooked. The 
same logic can be applied to triage. By posing structured 
questions about a patient’s symptoms, an LLM can serve 
as a remote triage and prioritization tool, estimating the 
urgency of presentation in emergency departments or 
outpatient clinics.3, 6, 19, 26, 27  

These models, particularly when integrated with CDSS, 
can potentially improve the patient experience and 
accelerate clinical workflows in eye-care settings. LLMs 
are emerging as powerful tools for optimizing routine 
documentation in ophthalmology clinics and enhancing 
decision support efficiency. During note taking, for 
example, brief dictations or bullet points recorded by the 
clinician can be automatically transformed by an LLM 
into a standardized, comprehensive discharge summary. 
Automating these tasks allows more time to be devoted 
to patient care, and the administrative workload can be 
reduced. Similarly, LLMs can automate the assignment of 
ICD-10 codes.19, 26, 27

One key innovation that LLMs can bring to ophthalmic 
practice is enhancing direct patient communication. LLMs 
offer clear advantages in producing patient-education 
materials, translating complex medical conditions into lay 
language, and answering frequently asked questions.41-43 
By considering each patient’s educational background 
and health literacy, the model can generate personalized 
content that alleviates anxiety about treatment and supports 
adherence. Additional GenAI systems, such as text-to-video 
or image (plus) text-to-video models, can be integrated 
when creating these resources. Beyond the clinic, LLM-
based tools can also assist patients during home treatment 
and follow-up care. A further benefit of LLMs is their 
extensive multilingual capability, derived from training 
on large and diverse datasets, this feature facilitates 
communication when physician and patient speak different 
languages and supports the global integration of medical 
documentation and knowledge.26

5. OPHTHALMIC EDUCATION AND 
ACADEMIC RESEARCH

GenAI technologies can potentially transform medical 
education, academic research, and scientific communication 
within ophthalmology. Although most studies examine the 
use of LLMs, it is clear that other GenAI models will soon 
be employed for the same purposes. These models perform 
critical functions by broadening the variety of clinical 
teaching materials, saving time and resources in scholarly 
projects, and strengthening academic communication.

5a. Education

In medical education, medical students and ophthalmology 
residents require theoretical knowledge and access to 
high-quality, diverse visual materials. Obtaining sufficient 
examples of rare eye diseases or surgical complications is 
often challenging. GAN and diffusion models can overcome 
these limitations. Conditions such as inherited retinal 
dystrophies or uncommon anterior-segment anomalies can 
be simulated through synthetic images, thereby enriching 
both the practical and theoretical learning experience.1, 9, 37

LLMs can significantly contribute to the preparation of 
educational resources and to the clear transmission of 
theoretical knowledge.27, 30, 44 These models are able to 
condense extensive scientific texts, clinical guidelines, 
and review articles in a short time, highlighting essential 
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points and offering didactic support in a question-and-
answer format.30, 44 In case-based teaching sessions, digital 
educational assistants that provide real-time responses 
to learners’ queries can enhance interaction and promote 
durable knowledge acquisition. Furthermore, LLMs can 
support role-play exercises and scenario-based simulations 
within ophthalmic education programs. 

5b. Academic Research and Writing

Academic investigations comprise time-intensive steps 
such as literature review, data acquisition, analysis, and 
manuscript preparation. GenAI models can ease each 
of these stages for researchers. LLMs, for instance, can 
perform broad literature searches in seconds and return 
concise, thematically organized summaries of current 
knowledge. In densely studied domains such as diabetic 
retinopathy or macular degeneration, investigators can 
obtain distilled insights from AI-driven platforms (such as 
Elicit, Consensus, or GPT-4-assisted search tools) instead 
of reading thousands of individual papers.19, 45

Beyond summarization, structured datasets can be 
assembled, relevant information can be pulled directly 
from integrated electronic health-record systems, and 
support can be provided for statistical analysis. AI-assisted 
writing tools further improve the language and style of 
academic manuscripts, offering particular value to scholars 
who publish in languages other than English.45

GenAI can also assist academic workflows through 
synthetic data generation. GAN- or diffusion-based models 
can create additional synthetic clinical data when clinical 
studies suffer from limited sample sizes. This approach is 
especially valuable for expanding small pilot studies and 
increasing statistical power.

5c. Scientific Presentation and Communication

Effective dissemination of scientific knowledge and 
research findings is essential in ophthalmic practice. GenAI 
models can support multiple stages of this process, from 
preparing presentations to drafting academic abstracts.27 
AI-based tools can convert academic articles directly 
into presentation slides, turning research results into 
explicit, engaging visual materials and saving the time 
of researchers.19 LLM-based systems can also streamline 
conference abstract preparation by expressing complex 

outcomes through concise graphics and explanatory text, 
thereby accelerating visual and written content production. 
In recent years, visual abstracts, which are published with 
research articles and enable readers to obtain information 
about the article easily, can also be created with GenAI 
models. 

6. ETHICS, SAFETY, AND REGULATORY 
CONSIDERATIONS

In addition to their technical potential, the use of GenAI 
models in ophthalmic practice raises substantial debates 
concerning ethics, safety, and legal regulation. In 
medical applications, where patient welfare and safety 
are paramount, these emerging technologies must fully 
align with ethical obligations. Nevertheless, current legal 
frameworks remain markedly insufficient to address AI-
driven medical applications.

6a. Clinical Ethics and Patient Safety

The clinical deployment of GenAI models directly impacts 
patient safety and fundamental principles of clinical ethics. 
One of the most critical issues is the potential of LLMs 
to produce “hallucinations,” that is, statements containing 
inaccurate or fabricated information. In medical contexts, 
LLMs may convincingly present nonexistent treatments, 
medications, or clinical findings, thereby misleading users. 
Such misinformation can have serious consequences that 
place patient health at significant risk. Consequently, all 
diagnoses and treatment recommendations generated 
by AI must be verified by qualified clinicians before 
implementation.3, 7, 30

Another ethical concern involves data bias during model 
training. Patient cohorts that are under-represented or 
misrepresented in training sets may be disadvantaged by 
the outputs of clinical algorithms.2, 3 For example, if fundus 
images from certain ethnic groups are sparse, a model 
that detects retinal disease may fail to accurately diagnose 
patients from those backgrounds. Such disparities risk 
exacerbating existing inequities in health care. Therefore, 
increasing the diversity of training data and subjecting 
algorithms to ongoing fairness audits are essential. The 
integration of AI into clinical workflows also complicates 
informed-consent procedures. Deploying these systems 
without explanations that patients can readily understand is 
ethically problematic. Accordingly, patients must receive 
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clear information about how the AI model operates, what 
data it uses, and what potential risks it entails, and their 
explicit consent must be obtained before use.

6b. Regulatory Framework and Approval Pathways

Clinical application of GenAI in ophthalmology requires 
clear guidance from regulatory authorities. However, the 
rapid evolution of AI often outpaces legislation, leaving 
regulatory gaps that create uncertainty in practice and may 
jeopardize patient safety.

AI-driven clinical decision support systems are usually 
classified as Software as a Medical Device (SaMD) and are 
subject to the approval processes applied to conventional 
medical devices.3, 7 The capacity of GenAI models for 
continual learning and adaptation, however, makes 
evaluation under traditional, static criteria challenging.

Key legal questions remain unresolved, including how 
extensively AI systems may participate in clinical decision-
making and who bears liability when errors occur. This 
uncertainty can deter clinicians from adopting such systems 
and slow the integration of AI-enabled tools into routine care.

6c. Data Privacy and Security

The data-driven nature of generative AI creates significant 
challenges for maintaining the confidentiality and security 
of patient information. During model training, sensitive 
materials such as clinical images and electronic health 
records may be shared with external parties, which introduces 
serious privacy risks. Current statutes (including the Health 
Insurance Portability and Accountability Act [HIPAA], the 
General Data Protection Regulation [GDPR], and Türkiye’s 
Personal Data Protection Law [KVKK]) impose strict 
requirements for protecting patient data.7, 30 Nevertheless, 
common AI data-handling practices, such as cloud-based 
storage and cross-border transfers, can conflict with these 
regulations and complicate compliance. Another risk of 
generative models is the problem of ‘memorization’, i.e., the 
risk that the models remember the training data. In this case, 
models may directly or indirectly disclose the data they were 
trained on, which may lead to privacy violations.3

6d. Proposed Solutions

Regulatory authorities should design tailored assessment 
pathways that account for the dynamic nature of AI-based 

systems and create flexible processes capable of evaluating 
continuously updated algorithms. Developing common 
international standards and guidelines would allow 
these technologies to be appraised consistently across 
jurisdictions. Such frameworks must define the specific role 
of AI within CDSS, delineate clear limits for its use, and 
continually emphasize the necessity of human oversight 
in clinical practice. In the near future, it will be essential 
to disclose the rationale underlying each recommendation 
generated by a CDSS. Techniques from explainable AI 
(XAI) can render decision-making processes transparent, 
thereby increasing the confidence of clinicians and patients 
while enhancing system accountability.4, 7, 30 Establishing 
algorithmic ethics standards and empowering institutional 
ethics committees to monitor the deployment of these 
technologies are additional key measures.

From a data-protection perspective, approaches such as 
federated learning should be more widely adopted.46 By 
keeping data local and training models on aggregated 
summaries, federated learning prevents the external transfer 
of sensitive patient information. The use of advanced 
encryption methods, can further safeguard data by ensuring 
that it remains encrypted even during processing.3, 7, 26

Moreover, patients must receive clear information about 
how their data will be used in AI systems and must obtain 
their explicit consent. Institutions should maintain detailed 
documentation of the datasets used for model training to 
ensure traceability. In the event of a privacy breach, this 
documentation enables rapid identification of the source 
and prompt implementation of corrective measures.

In summary, the ethical, safety, and regulatory challenges 
surrounding the clinical integration of GenAI require 
multifaceted solutions, all aimed at applying technological 
innovations within a patient-centered, safe, and ethically 
sound framework. Continuous collaboration among 
clinical, academic, and regulatory stakeholders will be 
crucial for ensuring the secure and effective use of GenAI 
systems and achieving successful transformation in the 
field of ophthalmology.

7. FUTURE DIRECTIONS AND RESEARCH 
PRIORITIES

Assessing current trends, the future of GenAI in 
ophthalmology is likely to be shaped by multimodal 
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systems, hybrid methodologies, early-diagnosis tools, 
personalized treatment strategies, and tele-ophthalmology 
solutions. Yet forthcoming AI applications will almost 
certainly extend beyond this shortlist. Emerging clinical 
needs will spur novel solutions, and advances in model 
design will gradually minimize today’s limitations. 
Consequently, researchers can expect to encounter new 
architectures that address existing disadvantages while 
opening additional avenues for innovation in ophthalmic 
care.

7a. Multimodal and Hybrid Systems

Multimodal and hybrid AI platforms are promising 
to improve diagnostic and prognostic accuracy in 
ophthalmology by integrating heterogeneous data sources. 
Imaging modalities such as OCT, fundus photography, 
and ultrasound biomicroscopy can be combined with 
electronic health records (EHR), structured clinical reports, 
laboratory values, and demographic variables to build more 
comprehensive decision-support tools.1, 4, 6, 21 This integrated 
strategy can outperform models that rely on a single data 
stream. Looking forward, one can envision fully integrated 
“multimodal imaging” systems that automatically generate 
outputs corresponding to multiple imaging techniques, 
perhaps even deriving several modality-specific views 
from a single standard fundus photograph.

Recent studies also underscore the value of incorporating 
textual data, including clinical notes and discharge 
summaries, into analytic pipelines, thereby expanding the 
diagnostic capabilities of AI systems. Such multimodal and 
hybrid approaches will elevate clinical decision support 
by furnishing ophthalmologists with multidimensional 
insights about each patient.30

7b. Early Disease Prediction and Personalized Medicine

Early diagnosis, predicting disease progression, 
and individualized treatment planning are central to 
contemporary generative AI research. AI-enabled models 
can identify subclinical alterations in retinal images, 
such as those seen in diabetic retinopathy (DR), allowing 
for the detection of the earliest disease manifestations 
and estimation of the progression rate. Furthermore, by 
integrating GenAI models with hybrid systems to create 
“digital twins” of rare or complex cases, clinicians can 
test therapeutic options in silico before applying them to 

patients. This approach enhances patient safety and moves 
ophthalmic practice decisively toward truly personalized 
care.3, 4, 30

GenAI-based prognostic systems can process large datasets 
to predict patients’ future visual acuity and therapeutic 
responses based on retinal scans. Using GAN-oriented 
methods, researchers have demonstrated the ability to 
forecast post-treatment OCT images in conditions such 
as age-related macular degeneration and diabetic macular 
edema following anti-VEGF therapy. These personalized 
approaches will allow therapeutic strategies to be tailored 
to the genetic profile, lifestyle, and disease dynamics of 
each patient.30

7c. Tele-ophthalmology and Remote Eye-Care

GenAI applications in tele-ophthalmology substantially 
enhance eye-care delivery in regions where geographical 
barriers or limited clinic access constrict services. Chatbot 
systems powered by LLMs can take detailed histories 
from patients who report blurred vision, ocular pain, or 
redness and then triage them according to urgency. When 
a sight-threatening condition is suspected, the system 
can automatically initiate an emergency tele-consultation 
and promptly direct the patient to specialist evaluation. 
Moreover, such platforms can help reduce the burden of non-
urgent visits in ophthalmic emergency departments.26, 30

Tele-ophthalmology solutions also improve early-detection 
rates in rural settings by enabling AI-based analysis 
of remotely acquired ocular images, such as retinal or 
external ocular photographs.47 For diseases such as diabetic 
retinopathy, home monitoring data can be assessed by 
AI algorithms, and clinicians can be alerted whenever a 
clinically significant change is detected, thereby facilitating 
earlier intervention.

Future AI platforms may acquire the capability to 
perceive emotional state of a patient.48 By analyzing vocal 
intonation or textual cues, empathetic virtual assistants 
could recognize anxiety or distress and provide tailored 
reassurance, making chronic-disease management more 
effective and patient-centered.

We are also likely to witness far greater automation of 
academic workflows. AI-driven analytic engines could 
extract meaningful scientific findings directly from 
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ophthalmic images and electronic health records, leaving 
researchers to focus primarily on interpreting results. In 
parallel, personalized research assistants that adapt to an 
investigator’s interests and working style may take a more 
active role in project execution. Research teams might 
soon expand to include virtual AI collaborators that handle 
routine tasks within the group. It may also be anticipated 
that purpose-specific custom GPT models, built on the 
GPT architecture and enriched with a variety of online and 
offline educational resources, will become increasingly 
widespread in the near future and be integrated into 
ophthalmology training.49

Beyond the topics discussed above, the potential 
applicability of GenAI models is also likely to become a 
focal point of future debate across a wide array of innovative 
and breakthrough technologies, ranging from robotic 
surgical instruments and automated imaging devices to 
augmented or virtual reality-integrated wearables and 
voice-activated digital or robotic assistants. Additionally, 
the abovementioned AI systems essentially do not perform 
autonomous actions, but only provide recommendations 
that assist the physician’s decision-making. Agentic AI, the 
most intriguing innovation of recent days, are integrated 
multistage, integrated AI models that can transform their 
deliberative outputs into autonomous actions.50 We consider 
that such systems may have the potential to be primarily 
integrated into the surgical process in robotic ocular 
surgery or to provide autonomous treatment decisions. 
Thus, the scope of human-AI collaboration in ophthalmic 
practice may be redefined, and the roles of physician and 
AI may change over time (such as AI actions executed 
under human supervision). In the future, we are likely to 
observe the adoption of agentic AI platforms in multiple 
medical fields, including both robotic ocular surgery and 
outpatient care.

8. CONCLUSION

GenAI marks the outset of a profound transformation in 
ophthalmology. Innovative contributions are expected in 
diagnosis, treatment planning, patient communication, 
and education. The ethical and practical challenges 
accompanying these technologies must be taken seriously 
and addressed through collective effort. With a balanced, 
evidence-informed strategy supported by close cooperation 
among academia, clinical practice, and industry, the risks 

of GenAI can be managed while its benefits are maximized. 
As evidence and experience accumulate in the years ahead, 
AI-enabled eye-care services will likely become integral 
to standard practice. In retrospect, this period may well be 
remembered as the dawn of a brighter era in ocular health, 
one in which technology blends harmoniously with the art 
of medicine to deliver higher-quality, more accessible, and 
more personalized care to broader populations.

During this transition, physicians bear a critical 
responsibility: Cultivating an unbiased awareness of 
AI. Active engagement by physicians is essential for 
the ongoing development and integration of these 
technologies. Ophthalmologists who acquire AI literacy 
and proactively incorporate AI tools into their workflows 
can become pioneers of AI-assisted practice and play 
pivotal roles in tomorrow’s health-care landscape. In doing 
so, ophthalmology will stand at the forefront of patient-
centered, AI-supported medicine. Realizing this vision 
depends on ophthalmologists and researchers actively 
embracing GenAI, remaining continuously updated, and 
integrating these tools into everyday practice. Education 
and research will then become more efficient, innovative, 
and engaging. 

In the near future, AI is unlikely to replace ophthalmologists; 
however, those ophthalmologists who lack AI awareness 
or resist adopting these systems may find the transition 
challenging.
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